首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3543篇
  免费   716篇
  国内免费   2011篇
  2024年   3篇
  2023年   230篇
  2022年   209篇
  2021年   328篇
  2020年   326篇
  2019年   372篇
  2018年   273篇
  2017年   306篇
  2016年   333篇
  2015年   271篇
  2014年   274篇
  2013年   258篇
  2012年   221篇
  2011年   226篇
  2010年   218篇
  2009年   270篇
  2008年   219篇
  2007年   284篇
  2006年   241篇
  2005年   212篇
  2004年   174篇
  2003年   152篇
  2002年   137篇
  2001年   124篇
  2000年   96篇
  1999年   77篇
  1998年   84篇
  1997年   37篇
  1996年   64篇
  1995年   33篇
  1994年   27篇
  1993年   24篇
  1992年   41篇
  1991年   22篇
  1990年   26篇
  1989年   15篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   10篇
  1984年   4篇
  1983年   1篇
  1982年   8篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1958年   8篇
排序方式: 共有6270条查询结果,搜索用时 15 毫秒
101.
Satellite data indicate significant advancement in alpine spring phenology over decades of climate warming, but corresponding field evidence is scarce. It is also unknown whether this advancement results from an earlier shift of phenological events, or enhancement of plant growth under unchanged phenological pattern. By analyzing a 35‐year dataset of seasonal biomass dynamics of a Tibetan alpine grassland, we show that climate change promoted both earlier phenology and faster growth, without changing annual biomass production. Biomass production increased in spring due to a warming‐induced earlier onset of plant growth, but decreased in autumn due mainly to increased water stress. Plants grew faster but the fast‐growing period shortened during the mid‐growing season. These findings provide the first in situ evidence of long‐term changes in growth patterns in alpine grassland plant communities, and suggest that earlier phenology and faster growth will jointly contribute to plant growth in a warming climate.  相似文献   
102.
Awareness of the natural ecological processes provided by organisms that benefit human well‐being has significantly progressed towards the goal of making conservation a mainstream value. Identifying different services and the species that provide them is a vital first step for the management and maintenance of these so‐called ecosystem services. Herein, we specifically address the armadillos, which play key functional roles in terrestrial ecosystems, including as ecosystem engineers, predators, and vectors of invertebrates and nutrients, although these roles have often been overlooked. Armadillos can control pests, disperse seeds, and be effective sentinels of potential disease outbreaks or bioindicators of environmental contaminants. They also supply important material (meat, medicines) and non‐material (learning, inspiration) contributions all over the Americas. We identify key gaps in the understanding of ecosystem services provided by armadillos and areas for future research required to clarify their functional role in terrestrial ecosystems and the services they supply. Such information will produce powerful arguments for armadillo conservation.  相似文献   
103.
104.
AimTo evaluate the state of graduate education in medical physics and progress in radiation oncology (RO) equipment in Mexico since 2000, when conferring degrees from two master’s-degree programs in Medical Physics began.BackgroundMedical physics is a Health Profession and there are international recommendations for education, training, and certification. Both programs follow these education guidelines. The most common clinical occupation of graduates is in RO services. Techniques in Mexican RO include traditional and high-precision procedures.MethodsAcademic and occupational information about the programs and their graduates were obtained from official websites. Graduates were invited to respond to a survey that requested information about their present job. We obtained data on RO equipment and human resources from public databases and estimated staffing requirements of medical physicists (MPs).ResultsMedical physics programs have graduated a total of 225 MPs. Half of them work in a clinical environment and, of these, about 90 work in RO services. MPs with M.Sc. degrees constitute 36% of the current MP workforce in RO, estimated to be 250 individuals. Survey responses pointed out the main merits and limitations of the programs. The number of MPs in RO has increased fivefold and the number of linacs sixfold in 15 years. The present number of MPs is insufficient, according to published guidelines.ConclusionAll MPs in RO services with advanced modalities must be trained following international recommendations for graduate education and post-graduation clinical training. Education and health institutions must find incentives to create more graduate programs and clinical residencies.  相似文献   
105.
106.
To address the need for more holistic approaches to ecological management and restoration, we examine ecosystem interventions through the lens of systems thinking and in reference to systems archetypes, as developed in relation to organizational management in the business world. Systems thinking is a holistic approach to analysis that focuses on how a system's constituent parts interrelate and how systems work over time and within the context of larger systems. Systems archetypes represent patterns of behavior that have been observed repeatedly. These archetypes help relate commonly observed responses to environmental problems with their effect on important feedback processes to better anticipate connections between actions and results. They highlight situations where perceived solutions actually result in worse or unintended consequences, and where changing goals may be either appropriate or inappropriate. The archetypes can be applied to practical examples, and can provide guidance to help make appropriate intervention decisions in similar circumstances. Their use requires stepping back from immediately obvious management decisions and taking a more systemic view of the situation. A catalog of archetypes that describe common patterns of systems behavior may inform management by helping to diagnose system dynamics earlier and identifying interactions among them.  相似文献   
107.
Biocrusts are multifunctional communities that are increasingly being used to restore degraded or damaged ecosystems. Concurrently, restoration science is shifting away from the use of purely structural metrics, such as relative abundance, to more functional approaches. Although biocrust restoration technology is advancing, there is a lack of readily available information on how to monitor biocrust functioning and set appropriate restoration goals. We therefore compiled a selection of 22 functional indicators that can be used to monitor biocrust functions, such as CO2 exchange as an indicator of productivity or soil aggregate stability as a proxy for erosion resistance. We describe the functional importance of each indicator and the available protocols with which it may be measured. The majority of indicators can be measured as a functional trait of species by using patches of biocrust or cultures that contain only one species. Practitioners wishing to track the multifunctionality of an entire biocrust community would be advised to choose one indicator from each broad functional group (erosion resistance, nutrient accumulation, productivity, energy balance, hydrology), whereas a targeted approach would be more appropriate for projects with a key function of interest. Because predisturbance data are rarely available for biocrust functions, restoration goals can be based on a closely analogous site, literature values, or an expert elicitation process. Finally, we advocate for the establishment of a global trait database for biocrusts, which would reduce the damage resulting from repeated sampling, and provide a wealth of future research opportunities.  相似文献   
108.
The restoration community continues to discuss what constitutes good environmental stewardship. One area of tension is the extent to which the well‐being of wild animals should inform restoration efforts. We discuss three ways that the perspective of wild animal welfare can augment restoration ecology: strengthening people's relationship with nature, reinforcing biotic integrity, and reducing mechanistic uncertainty. The animal welfare movement elevates sentient animals as stakeholders and explores how environmental context directly impacts the well‐being of individuals. Viewing wild animals through this lens may encourage people to think and act with empathy and altruism. Second, we incorporate animal welfare into the concept of biotic integrity for ecological and ethical reasons. Restoring ecosystem processes may enhance animal welfare, and vice versa. Alternatively, there may be a trade‐off between these factors, requiring local decision‐makers to prioritize between restoring ecosystem function and promoting individuals' well‐being. We conclude by discussing how welfare can impact population recovery, thereby adding insights about mechanisms underpinning restoration objectives. Ultimately, restoration ecologists and proponents of wild animal welfare could enjoy a productive union.  相似文献   
109.
Sea water temperature affects all biological and ecological processes that ultimately impact ecosystem functioning. In this study, we examine the influence of temperature on global biomass transfers from marine secondary production to fish stocks. By combining fisheries catches in all coastal ocean areas and life‐history traits of exploited marine species, we provide global estimates of two trophic transfer parameters which determine biomass flows in coastal marine food web: the trophic transfer efficiency (TTE) and the biomass residence time (BRT) in the food web. We find that biomass transfers in tropical ecosystems are less efficient and faster than in areas with cooler waters. In contrast, biomass transfers through the food web became faster and more efficient between 1950 and 2010. Using simulated changes in sea water temperature from three Earth system models, we project that the mean TTE in coastal waters would decrease from 7.7% to 7.2% between 2010 and 2100 under the ‘no effective mitigation’ representative concentration pathway (RCP8.5), while BRT between trophic levels 2 and 4 is projected to decrease from 2.7 to 2.3 years on average. Beyond the global trends, we show that the TTEs and BRTs may vary substantially among ecosystem types and that the polar ecosystems may be the most impacted ecosystems. The detected and projected changes in mean TTE and BRT will undermine food web functioning. Our study provides quantitative understanding of temperature effects on trophodynamic of marine ecosystems under climate change.  相似文献   
110.
Numerous studies have demonstrated that fertilization with nutrients such as nitrogen, phosphorus, and potassium increases plant productivity in both natural and managed ecosystems, demonstrating that primary productivity is nutrient limited in most terrestrial ecosystems. In contrast, it has been demonstrated that heterotrophic microbial communities in soil are primarily limited by organic carbon or energy. While this concept of contrasting limitations, that is, microbial carbon and plant nutrient limitation, is based on strong evidence that we review in this paper, it is often ignored in discussions of ecosystem response to global environment changes. The plant‐centric perspective has equated plant nutrient limitations with those of whole ecosystems, thereby ignoring the important role of the heterotrophs responsible for soil decomposition in driving ecosystem carbon storage. To truly integrate carbon and nutrient cycles in ecosystem science, we must account for the fact that while plant productivity may be nutrient limited, the secondary productivity by heterotrophic communities is inherently carbon limited. Ecosystem carbon cycling integrates the independent physiological responses of its individual components, as well as tightly coupled exchanges between autotrophs and heterotrophs. To the extent that the interacting autotrophic and heterotrophic processes are controlled by organisms that are limited by nutrient versus carbon accessibility, respectively, we propose that ecosystems by definition cannot be ‘limited’ by nutrients or carbon alone. Here, we outline how models aimed at predicting non‐steady state ecosystem responses over time can benefit from dissecting ecosystems into the organismal components and their inherent limitations to better represent plant–microbe interactions in coupled carbon and nutrient models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号